Fysik 2 (Uppdrag 2) Nya

bc1af5cc1f6c7976e1974909f77e6e01

Fysik 2
Uppdrag 2

Uppgift 1

Denna uppgift ska du genomföra experimentellt. Ta fram en kula eller en boll. Sätt den på bordet och rulla iväg bollen så att den rullar utanför bordet och ner på golvet. Mät hur långt från bordskanten bollen landar. Anteckna bordets höjd. Hur stor hastighet hade bollen när den lämnade bordet?  Bortse från luftmotstånd!                                                     EB+K+Ex/ CP/ 0

Svar:

Vid besvarandet av denna uppgift hade jag inte tillgång till en kula, varför jag använder mig av fiktiva värden vad avser landningsplats för kulan och avstånd från bordskanten. Nedan presenteras de värden vi använder oss av.

Höjd matbord: 75 cm = 0,75 m

Avstånd från bordskant: 325 cm = 3,25 m

Till att börja med behöver vi beräkna falltiden – med formeln Y=-gt2/2. Minustecknet i formeln finns till just eftersom att kulan rör sig neråt i y-led. Kulan faller ner från bordet som har en höjd om 0,75 och vi löser därför ut t enligt nedan.

t = √2y/-g  √2 x (-0,75)/-9,82 = 0,39 s

I och med att vi har falltiden och vart kulan hamnat (teoretiskt) i x-led kan vi använda oss av formeln v0 t = x   och lösa ut v ur formeln. 

v = x / t  3,25/0,39 = 8,33 m/s

För högre nivå: Höj bordets ena sida från marken och bestäm vinkeln mellan bordskivan och marken. Sätt bollen på den upphöjda kanten och låt den rulla iväg. Hur långt bort från bordet hamnar bollen nu? Mät avståndet och jämför med dina teoretiska värden, de som du har beräknat. Diskutera eventuella felkällor.                                                          0/0/AB+P+K+Ex             

Uppgift 2

En landsväg går över en liten höjd som har formen av en cirkelbåge. Krökningsradien i denna cirkel är 80 m. Vilken är den största hastighet en bil kan ha utan att tappa markkontakten när den passerar toppen på höjden?                                                                                 EB+P+I/0/0

Skärmavbild 2020-01-03 kl. 16.35.10

Svar:

Bilen påverkas huvudsakligen av två krafter – nedåt påverkas bilen självklart tyngdkraften, den andra kraften som verkar är centripetalkraften vid kurvans topp. Därmed kan vi likställa formeln för dessa och när värdet av dem båda uppgår till noll, finns inte längre något motstånd som håller bilen på plats.

Därav följande uttryck

  • • mg = mv2 / r  √gr = v  √9,82 x 80 = 28 m/s

Uppgift 3

Det behövs en kraft på 105 N för att dra ut en horisontell fjäder 35 cm. Hur stort arbete uträttas om man drar ut fjädern en halv meter?                                                  
 EB+P+K/ 0/ 0

Svar:

Vi har formeln Wp  = ½ kx2 som talar om hur mycket arbete/energi som krävs för att förlänga t.ex. fjädern med sträckan x (fjäderns förlängning) från jämviktsläget och där k är fjäderkonstanten. Vi börjar därför med att försöka få fram samtliga variabler till formeln. Vi börjar med fjäderkonstanten beräknad med hjälp av Hookes lag F = kx

105 = k x 0,35  105/0,35 = 300 N/m = 300 N/m

x utgör som ovan nämnt fjäderns förlängning och den förlänging som vi vill uppnå är 0,5 m varför vi använder det i vår formel, och fjäderkonstanten har vi redan beräknat enligt ovan.

W = 1/2 x 300 x 0,52 = 37,5 J 

Uppgift 4

En partikel med massan 350 g utför en harmonisk svängning med amplituden 0,15 m kring ett jämviktsläge. Svängningstiden är 1,5 s. 

a) Hur stor är den resulterande kraften på partikeln i det ögonblick då avståndet från jämviktsläget är 0,10 m?   Ledtråd: Derivera elongationen för att få hastigheten. Derivera hastigheten för att få accelerationen.                                                      EB+P/ 0/ 0

Svar:

Vi torde inledningsvis räkna fram fjäderkonstanten, baserat på den information vi har att tillgå är w = √k/m en lämplig formel, vi börjar med att beräkna w och löser därefter ut k enligt nedan.

w = 2π / t  w = 2π/1,5 = 4,19
w2 = k/m  k = w2 x m = 4,192 x 0,35 = 6,14 N/m

De krafter som verkar på fjädern är tyngdkraften nedåt och fjäderkraften uppåt. Därför borde det vid jämviktsläge råda följande kx = mg och vi löser därmed ut x enligt nedan.

kx = mg  mg/k = x  0,35 x 9,82/6,14 = 0,56 m
0,56 – 0,1 = 0,46 m 

Den resulterande kraften vid 0,46 m bestäms enligt nedan
FR = mg – Ffjäder  0,35 x 9,82 -6,14 x 0,46 = 0,61 N 

b) Hur stor är fjäderkraften i samma ögonblick?

0/ CB+P+K / 0
Ffjäder bestäms genom kx därmed 6,14 x 0,46 = 2,82 N

Uppgift 5

En spiralfjäder förlängdes 12 cm då en vikt med massan m hängdes i den.
Skärmavbild 2020-01-03 kl. 16.36.11Två likadana spiralfjädrar ”parallellkopplades” och vikten hängdes upp enligt figur. Vilken svängningstid får systemet då vikten dras ned en bit och släpps?                        
 0/ 0/ AB+P+K

Svar:

Utifrån bilderna som illustreras ovan antar jag att det är en harmonisk svängningsrörelse som uppstår. Det innebär egentligen att det är periodiska rörelser som fortsätter utan att den utsätts för dämpning. Kraften som uppstår verkar alltid mot jämviktsläget, det innebär att då kulan befinner sig i dess yttersta läge så kommer den att sträva efter att ta sig tillbaka till dess jämviktsläge.

Vi börjar med att räkna fjäderkonstanten. Beräkningen av fjäderkonstanten i detta fall kommer i princip följa samma modell som vid beräkningen av seriekopplad elektricitet eller parallellkopplingar. Nedan redovisas de formler som används för beräkningen av fjäderkonstanten vid parallellkoppling.

C = C1 + C2 detta gäller för parallellkoppling. 

Det vill sägas att vårt k värde dubbleras. Vi börjar med att lösa ekvationen för k.

  • F = kx
  • F = mg
  • mg = kx
  • k=mg/x

I och med att vi skrev att k värdet dubbleras gäller följande

  • k = 2 x mg/x
  • k = 2 x 9,82m/0,12
  • k= 163,67m
  • k=164m

Det som kvarstår är beräkningen av svängningstiden och för det har vi formeln T = 2π√m/k. Som redovisat ovan fick vi ett värde om 164m för k.Uttrycket för beräkningen blir därmed.

  • T = 2π√m/k  T = 2π√m/164m  T = 2π√1/164
  • T = 0,49 s

Svängningstiden blir 0,49 s

Publicerad av Joe

Hey! Vanlig kille i Svealand som studerar lite ämnen i samband med jobb för att till HT16 fortsätta med högskolestudier. Är varken överambitiös eller avdankad, hamnar där mitt emellan. Thats it!

3 reaktioner till “Fysik 2 (Uppdrag 2) Nya

  1. Hej, har du tillgång till Uppdrag 3 också (Fysik 2 2020 nya)? Jag skulle behöva börja på uppdrag 3, men Hermods tar lång tid på sig för att få upp mitt konto. Gör inget om inte frågorna är besvarade. Om du inte vill lägga upp uppdraget innan frågorna är besvarade, kanske du bara kan skicka frågorna med mail. Skulle uppskattas väldigt mycket.

    Gilla

  2. Hej! 🙂

    Tycker dina genomgångar av fysikuppdragen är toppen! Kommer du fortsätta att ladda upp genomgångar av dom nya uppdragen?

    Med vänliga hälsningar

    Erik

    Gilla

Lämna ett svar till Christian Avbryt svar

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com-logga

Du kommenterar med ditt WordPress.com-konto. Logga ut /  Ändra )

Google-foto

Du kommenterar med ditt Google-konto. Logga ut /  Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut /  Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut /  Ändra )

Ansluter till %s

%d bloggare gillar detta: